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Abstract
It was recently shown that the kinetics of persistent photoconductivity (PPC) build-up in
indium doped Cd1−xMnx Te are non-exponential and can be described solely by the
stretched-exponential function. The non-exponentiality is attributed to the indium related DX
centers present in the materials. In order to explain this observation, low temperature
photoconductivity build-up was studied for Cd1−x Mnx Te:In of two different manganese
contents. It was found that this type of response has its origin in the heavy-tailed distribution of
the DX centers. The distribution was analyzed in terms of photon flux. Increasing photon flux
leads to the more dispersive behavior. It was also confirmed that the heavy-tailed distribution is
due to the different local configuration of atoms surrounding DX centers in the alloy.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Investigations of the origin of non-exponential relaxation
processes in a wide class of various materials have led
to the conclusion that the empirically observed relaxation
patterns reflect some universal behavior. It has been
established that independently of the considered medium
the relaxation response obtained by different experimental
techniques can be well characterized by a small class of
fitting functions exhibiting asymptotic properties—the so-
called power-laws [1–3]. The power-laws are observed in both
the time and frequency domain of the measurement and can be
easily noted in a double-logarithmic scale since in this scale
any power dependence is linear.

Recent development of the stochastic approach to
relaxation allowed us to clarify the mechanisms responsible
for the experimentally observed short-time power-laws. Within
this approach not only the distribution of the relaxation
rates can be calculated but also the explicit form of the
relaxation function may be derived [4–6]. The clue of
the stochastic model is that it allows us to describe the
statistical properties of the relaxing entities, i.e. (i) the number
of objects contributing to the relaxation response, (ii) the

distribution of individual relaxation contributions and (iii) the
distribution of the effective relaxation rate [7]. Moreover this
scheme brings information concerning interactions among the
relaxing entities, i.e. the possibility of their clusterization and
interaction among the clusters. An appropriate combination
of cluster sizes and distributions of relaxation rates leads to
the well-known relaxation responses such as the stretched-
exponential Kohlrausch–Williams–Watts (KWW) (in the time-
domain) or Havriliak–Negami (in the frequency-domain)
functions [8].

The KWW relaxation function given by equation:

�KWW(t) = e−( t
τ )

α

, (1)

where 0 < α < 1 is the stretching exponent and τ is a time
constant of the transient, is the most frequently used to fit
the time-domain relaxation data. This function leads to the
response function, defined as the minus of the growth rate of
the relaxation function f (t) = − d�KWW(t)

dt , decaying at short
times as tα−1, hence the short-time power-law.

The stretched-exponential function has been widely ap-
plied to describe the non-exponential kinetics of photocon-
ductivity decay in materials possessing metastable defects
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called DX centers [9–11]. The experimental evidence for the
presence of DX centers in the material is a persistent pho-
toconductivity effect (PPC) observed at low temperatures—
photoinduced conductivity persists for a long time (hours)
after turning off the light. Investigations of the persistent
photoconductivity build-up in the indium and gallium doped
semiconducting multiternary compound Cd1−x MnxTe have
shown that photoconductivity decay can be properly described
by the KWW function. It was found that also the photoconduc-
tivity build-up response transients in these materials are non-
exponential and exhibit a short-time power-law property. This
law is characteristic for the stretched-exponential relaxation
pattern [12–14]. Both the persistent photoeffect and a
non-exponential photokinetics in these materials have been
attributed to the photoionization of DX centers [15–18].

In order to explain the asymptotic behavior of photo-
conductivity build-up in gallium doped Cd0.99Mn0.01Te the
stochastic approach was applied for the first time [13]. It
has been shown that the stretched-exponential form of the
measured photoconductivity kinetics results from a heavy-
tailed (broad) distribution of the DX centers relaxation rates
having its origin in a different local atomic arrangement in
this multiternary compound [14]. In the present paper the
stochastic model was used to explain a photoconductivity
build-up in indium doped Cd1−x MnxTe. It has been found
that this model leads to conclusions similar to those found
for gallium doped Cd1−x MnxTe. In order to shed light on
the microscopic behavior of DX centers in Cd1−xMnx Te the
following problems have been analyzed: (i) the influence of
photon flux on the statistical properties of DX centers, (ii)
the distributions of the DX centers’ relaxation rates, (iii) the
correlation among the centers.

2. Stochastic approach to the time domain relaxation
processes

Application of the stochastic approach to investigate the
relaxation processes allows us to characterize the considered
material both micro- and macroscopically and to find a
relationship between both points of view [5, 19]. Within
this approach a random variable βi = 1

τi
is assigned to

each individual relaxation rate connected with a microscopic
relaxation contribution (here—a DX center). Macroscopic
properties of the studied medium are represented by a random
variable β̃, called the effective relaxation rate, equal to the sum
of individual rates:

β̃ = limN→∞
N∑

i=1

βi

AN
. (2)

In the above formula AN is a positive scaling constant. It can be
shown, using the limit theorems of probability theory [20], that
the above limit exists solely if the distribution of the individual
relaxation rates βi belongs to the domain of attraction of the
α-stable law. It means that the probability density function of
individual rates exhibits the power-law tail for large b:

ρβi (bi) ∼ b−α−1
i , bi → ∞, 0 < α < 1, (3)

where bi ∈ [0,∞) denotes values taken by random variable
βi . In probability theory, distributions of non-exponentially
decaying tails are called heavy-tailed (long-tailed, power-
tailed) distributions [22–25]. The distribution of any non-
negative random variable X possesses a heavy-tail if for large
values of the support x the tail decays as a fractional power-
law (x/x0)

−a , where x0 and 0 < a < 1 are some positive
constants [20].

In the case of the heavy-tailed distribution of βi the
effective relaxation rate β̃ is an α-stable random variable
(0 < α < 1) β̃α with an asymmetric probability density
function ρβ̃α

(b) which possesses the same power-law tail for
large b [6–8, 21]:

ρβ̃α
(b) ∼ b−α−1, b → ∞. (4)

In the above relation b ∈ [0,∞) represents values taken
by the random effective relaxation rate.

Generally, an α-stable density ρ(b) is defined as a Fourier
transform of the characteristic function ϕ(t):

ρ(b) = 1

2π

∫ +∞

−∞
e−itbϕ(t) dt (5)

where

log ϕ(t)

=

⎧
⎪⎨

⎪⎩

iγ t − c
α |t|α

{
1 − iβ sgn(t) tan

(π

2
α
)}

, α �= 1

iγ t − c|t|
(

1 + iβ
2

π
sgn(t) log |t|

)
, α = 1.

The shape of the density ρ(b) is determined by four
parameters: the index of stability 0 < α � 2, the skewness
parameter −1 � β � 1, the location parameter γ ∈ R and
the scale parameter c > 0 [22, 23]. When α approaches
1, the density tends to the Dirac δ-function. In this case
the rate contributions focus around the expected value of
their distribution. The relaxing system is deterministic for all
relaxing entities’ responses to the external disturbance in the
same manner. This is the particular case of Debye relaxation.

According to the stochastic definition, a relaxation
function is equal to the Laplace transform of the effective
relaxation rate probability density function (pdf) ρβ̃α

(b):

�(t) =
∫ ∞

0
e−btρβ̃α

(b) db. (6)

The relaxation function defined in equation (6) can be
obtained in explicit form as the KWW function �KWW(t) =
e−( t

τ
)α solely if the effective relaxation rate pdf is the

asymmetric, right-skewed (β = 1) α-stable probability density
function with 0 < α < 1 and the scale parameter c =
[cos( πα

2 )]1/α · 1
τ

.
To sum up, the α-stable distribution of the effective

relaxation rate is a consequence of the heavy-tailed (broad)
distribution of individual relaxation rates βi [21, 26]. In the
studied material the individual relaxation rates βi are assigned
to DX centers. The heavy-tailed distributions of the centers
mean that some of them respond fast enough to be detected
while others do not contribute to the measured photokinetics.
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Figure 1. The PPC build-up kinetics normalized according to equation (6). Open circles stand for the experimental data, solid lines for the
fitting with the use of the stretched-exponential function �KWW.

3. Experiment

Indium doped Cd0.93Mn0.07Te and Cd0.9Mn0.1Te crystals used
in this study were grown by the Bridgman method. Prior to the
measurements the samples were annealed in cadmium vapor
to reduce the cadmium vacancies. Slices of the material were
mechanically polished and etched in a 2% Br2 in methanol
solution. Capacitance–voltage measurements performed with
a 1 MHz capacitance bridge, yielded a room temperature donor
net concentration of the order of 1015 cm−3 for Cd0.93Mn0.07Te
and 1016 cm−3 for Cd0.9Mn0.1Te samples.

For the photoconductivity measurements ohmic contacts
were produced by indium soldering onto the fresh frontside
surfaces of the samples. The four point probe method
was applied. A Keithley constant current source was used
and the voltage drop across the sample was measured at
10 μA constant current. The photoconductivity transients were
recorded at 77 K after exposing the samples to monochromatic
light of below band-gap energy equal to 1.24 eV (λ = 1.0 μm).
The maximum value of light intensity used in the experiment
was of the order of several tens of W m−2. A tungsten lamp
served as a light source. A shutter of time constant equal to
0.2 s was applied to turn on and off the light. Prior to each
measurement a sample was cooled down in darkness to the
liquid nitrogen temperature and subsequently illuminated by
a photon flux for several minutes until conductivity saturated.
Various photon fluxes were applied. Variation of the photon
flux was achieved by changing the current of the lamp supplier.
The light beam passed through a monochromator and with the
help of fiber optics was focused on a sample mounted in a
sample holder. A thermopile was used to measure the photon
flux.

4. Results and discussion

In order to analyze the photoconductivity build-up kinetics
in terms of the relaxation function �(t) the data have been

normalized according to the following formula:

�(t) = �σ(t) = σ(tsat) − σ(t)

σ (tsat) − σ(ton)
. (7)

The normalized photoconductivity transients can be
understood as a relaxation function. According to equation (7)
�σ(t) describes the time evolution of a non-equilibrium state
of the investigated physical system and decays monotonically
from �σ(t = ton) = 1 to �σ(t = tsat) = 0 [1]. In the above
relation �σ(t) denotes relative change in the conductivity due
to illumination, σ(ton) represents the value of conductivity
at the instant of turning the light on and σ(tsat) is the
saturated conductivity. In figures 1(a) and (b) the relaxation
functions are presented for both samples. In both cases
the considered kinetics can be well fitted by means of the
stretched-exponential relaxation function. In other words, the
considered normalized photoconductivity build-up in a time-
domain follows the stretched-exponential relaxation pattern.

In figure 2 the dependence of the stretching exponents
(determined from the fit of the �KWW(t) to the photoconduc-
tivity build-up kinetics) on a photon flux F is plotted. For
both samples the values of α decrease linearly with increasing
photon flux. The values of α fall in the range of (0.91–0.99)
for Cd0.97Mn0.03Te:In whereas for Cd0.9Mn0.1Te:In they are
smaller and fall in the range of (0.89–0.95). Relaxation time
values, resulting from the KWW fitting of the data, were found
to be in the range of (350, 120) for Cd0.97Mn0.03Te:In and (213,
114) for Cd0.9Mn0.1Te:In samples.

4.1. DX centers relaxation rate distribution

As was mentioned in section 2 the explicit form of the
relaxation function allows us to gain insight into the local
random characteristics of the studied material. The stretched-
exponential form of the relaxation function is a consequence
of the heavy-tailed distribution of DX center relaxation rates.
In figure 3 the densities of the relaxation rates are plotted on
a linear and a double-logarithmic scale. The densities were
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Figure 2. The dependence of the stretching exponent α on the photon flux F .

Figure 3. Densities of the relaxation rates for various values of the parameter α ∈ (0, 1). The upper panels refer to the linear, the lower one
the double-logarithmic scale, respectively.

calculated with the use of equation (5) with the values of
stretching exponents α and time constants τ resulting from the
fitting of the KWW function to the experimental data. The
location parameter γ was set to 0. The value of scaling constant

c was calculated with use of the formula: c = [cos( πα
2 )]1/α · 1

τ
.

The obtained densities of the relaxation rates are completely
asymmetric (β = 1). The densities presented in a double-
logarithmic scale (figures 3(c) and (d)) demonstrate that the
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smaller the stretching parameter is the slower the density
decays. Hence the smaller the stretching exponent is the more
dispersive the material becomes. Figures 3(a)–(d) lead to two
major conclusions.

• increasing photon flux results in the decreasing value of α.
This can be explained by the fact that the higher the flux
the larger is the number of ionized centers. This means
that the probability that the relaxation rates of DX centers
will take a value located in the tail of their distribution
increases with increasing photon flux.

• comparing figures 3(a) and (b) with figures 3(c) and (d)
one can see that the values of α are smaller for the material
of higher manganese content. The physical origin of the
stretched-exponential response for Cd1−x MnxTe:Ga has
been explained by different local atomic arrangements in
this multiternary alloy [14]. If one assumes that this is
valid also for indium doped material then actually the
higher manganese content leads to the smaller values of
α.

According to the stochastic model of relaxation the
system responding non-exponentially appears to be divided
into clusters. Interactions among the clusters may lead to
the creation of some mesoscopic regions (‘superclusters’). It
can be proven [7, 8, 26] that if the relaxation function takes
the KWW form then: (i) the considered system is divided
into clusters of similar sizes but of different relaxation rates
which may differ by many orders of magnitude, (ii) there is no
long-range interactions among relaxing entities. The correlated
cluster scheme seems to be consistent with the hypothesis that
negatively charged and ionized DX centers interact forming
dipole-like DX−–DX+ objects [27–31]. It is reasonable to
assume that the cluster is formed by such a dipole whereas
the interaction among the dipoles results in the appearance
of mesoscopic regions—superclusters. Both the interaction
inside a cluster and among clusters are presumably short-
range interactions and hence the KWW relaxation function
is observed in experiment. The fact of the presence of
spatial correlations of in-donor charges in CdTe crystals
was experimentally confirmed [31]. However, the stochastic
hypothesis concerning the presence of short-range correlation
between the centers in the studied Cd0.97Mn0.03Te:In and
Cd0.9Mn0.1Te:In should be confirmed by further experimental
investigations.

5. Conclusions

The kinetics of photoconductivity build-up due to DX centers
was studied in indium doped Cd1−x MnxTe. It was found that
the obtained data can be properly described in terms of the
stretched-exponential relaxation pattern. This is due to the fact
that the KWW function perfectly fits the short-time power-law
exhibited by a response of the transients. It was shown that the
distribution of the DX centers’ relaxation rates is a heavy-tailed
one. A ‘weight’ of the distribution tail is determined directly
by a value of stretching exponent α and indirectly by a photon
flux F . Increasing photon flux results in a linear decrease of
α. The values of α are lower for higher manganese contents.

This observation confirms the assumption that the heavy-tailed
distribution of DX centers has its origin in a different local
atomic neighborhood in the alloy.
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